18

Navigation Controls:
reeView, Menu, and
SiteMapPath

If you need information on: See page:

Using the TreeView Class 692

Creating the TreeView Contral 696

S

Creating SiteMapPath 725

Chapter 18

Navigation controls allow users to navigate through the Web pages. If your Web site is composed of multiple
pages, you need an interface that helps in making the navigation of pages easier. The user interface for
navigation can be a simple, static, hyperlink or involve the use of trees and menus, Navigation controls, such as
the Treeview control, Menu control, and SiteMapPath control, make it simple to add page hierarchies, quick
links, and provide advanced navigational capabilities to your application. The Navigation controls display data
in a consistent manner enabling the users to comprehend the application structure. These Navigation controls
are the most recently introduced controls, and provide several features, such as consistent and easily managed
navigation, to developers as well as users.

In this chapter we explore three navigation controls - TreeView control, Menu control, and SiteMapPath control,
and also discusses about the base class of each of these navigation controls. This chapter also discusses about the
various properties, methods, and events of the navigation controls and shows you the practical implementation
of using these navigation controls.

Using the TreeView Class

692

The TreeView class enables you to manage the TreeView control. The TreeView class can be used to create a
tree-based hierarchical structure at runtime.

Here is the class hierarchy of the Treeview class:
System.web.UI «Control
System.

trol 17 o
3b:UT . webC Mierarchi¢albatasoundcontral
. _ . System.web.Ul.wébControls:Treeview -

The TreeView class contains a Node property that can be used to create the nodes of the TreeView control. The
Nodes collection contains the Add method that can be used to add a text item or a TreeNode object. It can
further have child nodes and consists of properties, such as ExpandAll and Collapseall, which expand
and collapse the tree view nodes. You can also insert check boxes against the nodes and can obtain the selected
information dynamically bv using the TreeView class.

You can find the noteworthy properties of the TreeView class in Table 18.1:

Table 18.1: Notewa&hy Properties of the TreeView Class

Atk SRS L

AutoGenerateDataBindings Obtains or sets a value indicating whether the Treeviaw control automatically
generates tree node bindings

CheckedNodes Obtains a collection of TreeNode objects that represent the nodes in the TreeView
control that display a selected check box

CollapselmageToolTip Obtains or sets the Too1Tip for the image that is displayed for the collapsible node
indicator .

CollapseImageUrl Obtains or sets the URL to a custom image for the collapsible node indicator

DataBindings Obtains a collection of TreeNodeBinding objects that define the relationship
between a data item and the node to which the object is binding

EnableClientScript Obtains or sets a value indicating whether the TreeView control renders client-side
script to handle expanding and collapsing events

ExpandDepth Obtains or sets the number of levels that are expanded when a TreeView control is
displayed for the first time

ExpandImageToolTip Obtains or sets the ToclTip for the image that is displayed for the expandable node
indicator

Navigation Controls: TreeView, Menu, and SiteMapPath

Table 18.1: Noteworthy Properties of the TreeView Class

ExpandImageUrl

Obtains or sets the URL to a custom image for the expandable node indicator

HoverNodeStyle Obtains a reference to the TreeNodeStyle object that allows you to set the
appearance of a node when the mouse pointer is positioned over it

ImageSet Obtains or sets the group of images to use for the Treeview control

LeafNodeStyle Obtains a reference to the TreeNodeStyle object that allows you to set the
appearance of leaf nodes

LevelStyles Obtains a collection of Style objects that represent the node styles at the individual
levels of the tree

LineImagesFolder Obtains or sets the path to a folder that contains the line images that are used to
connect chiid nodes to parent nodes

MaxDataBindDepth Obtains or sets the maximum rnumber of tree levels to bind to the TreeView control

NodeIndent Obtains or sets the indentation amount (in pixels) for the child nodes of the
TreeView control

Nodes Obtains a collection of TreeNode objects that represents the root nodes in the
TreeView control

NodeStyle Obtains a reference to the TreeNodeStyle object that allows you to set the default
appearance of the nodes in the TreeView controt

NodeWrap Obtains or sets a value indicating text wraps in a node when the node runs out of
space

NoExpandImageUrl Obtains or sets the URL to a custom image for the non-expandable node indicator

ParentNodeStyle Obtains a reference to the TreeNodeStyle object that allows you to set the
appearance of parent nodes in the TreeView control

pPathSeparator Obtains or sets the character that is used to delimit the node values that are specified

by the ValuePath property

PopulateNodesFromClient

Obtains of sets a value indicating whether node data is populated on demand from
the client

RootNodeStyle Obtains a reference to the TreeNodeStyle object that allows you to set the
appearance of the root node in the TreeView control

SelectedNode Obtains a TreeNode object that represents the selected node in the TreeView control

SelectedNodeStyle Obtains the TrecNodeStyle object that controls the appearance of the selected node
in the TreeView control

SelectedValue Obtains the value of the selected node

ShowCheckBoxes Obtains or sets & value indicating which node types will display a check box in the
TreeView control

ShowExpandCollapse Obtains or sets a value indicating whether expansion node indicators are displayed on
the Web page

ShewLines Obtains or sets a value indicating whether lines connecting child nodes to parent
nodes are displayed on the Web page

SkipLinkText Obtains or sets a value that is used to render alternate text for screen readers to skip

the content for the control

93

Chapter 18

Table 18.1: Noteworthy Properties of the TreeView Class

Target Obtains or sets the target window or frame in which to display the Web page content
that is associated with a node

Visible Obtains or sets a value indicating whether the control is rendered as Ul on the page

You can find the noteworthy methods of TreeView class in Table 18.2:

Table 18.2: Noteworthy Methods of TreeView Class

CollapseAll Closes every node in the tree
ExpandAll Opens every node in the tree
FindNode Find the TreeNode object in the TreeView control at the specified path

You can find the noteworthy events of TreeView class in Table 18.3:

SelectedNodeChanged

Table 18.3: Noteworthy Events of the TreeView Class

Occurs when a node is selected in the Treeview control

TreeNodeCheckChanged Occurs when a check box in the TreeView control changes state between posts to the
server

TreeNodeCollapsed Occurs when a node is collapsed in the Treeview control

TreeNodeDataBound Occurs when a data item is bound to a node in the TreeView control

TreeNodeExpanded Occurs when a node is expanded in the Treeview control

TreeNodePopulate Occurs when a node with its PopulateOnDemand property set to true is expanded in
the TreeView control

The TreeView Control

694

The TreeView control is used for logically displaying the data in a hierarchical structure, similar to Windows
explorer. You can use this control when you need to display the navigation menu for displaying the files and
folders. You can-display an XML document and database records in a tree structure. To work with the
TreeView control at runtime, you can programmatically access the TreeView Web server control.

The TreeView Web server control is used to create tree-based hierarchical structure, set properties, populate
nodes, and so on. The Treeview control consists of the TreeView container and TreeNode properties. There
can be multiple nodes in the tree view structure, which can be nested. The TreeNode property has a Text
property that displays the text for the node.

In addition to the Text property, there is also an Expanded property for TreeNode, which is used to expand
and collapse the nodes. The default value of this property is False. However, if you set it to True, the control
will be displayed in the expanded view every time it is loaded.

You can access the TreeView control directly from the Navigation tab in the Toolbox. You can add the
TreeView control to your Web page simply by either double clicking the Treeview control in the Toolbox or
by dragging the control from the Toolbox to the design view of the Defalt.aspx page, which is the default page of
your Web site. Figure 18.1 shows the default tree view node when the TreeView control is placed on the
Default.aspx Web page of the TreeViewControl example:

Navigation Controls: TreeView, Menu, and SiteMapPath

- Fle Ect View Website Buid Debug Uste Formst Tools Tet Anhze Window Help

e Do

Pomemt ZiLeat 21

Figure 18.1: Displaying the TreeView Control
You can also add the TreeView control by adding the following code snippet in the <form> element of your
Web page: '
o xasprTreevi ew T0="Tr eevie
LT kjasprTreevisws

The TreeView control supports the AutoFormat feafure, which allows you to select from the aiready existing formats.
AutoFormat option can be selected from the Smart Tag of the TreeView conlrod.

The TreeView control is a powerful server control that is used to render the tree view user interface. It has
many properties, such as CheckedNodes, DataBindings, NodelIndent, Nodes, and NodeStyle that are
served by means of the TreeView class. The contents for the TreeView control can be added in the following
ways:

Q By adding programmatically at runtime.

O By dynamically loading from an external datasource, such as XML file.

0 The TreeView control can also be added while designing an application.

Adding Nodes to a TreeView Control Dynamically

The TreeView control can load the data dynamically at runtime. For this, you have to set the properties of the
TreeView nodes dynamically. The TreeView control has a Nodes property, known as TreeView.Nodes. You
can add nodes to the TreeView control by using the add method of the TreeView.Nodes property.

Adding Nodes to a TreeView Control Using the DataSource Properly

You can also add data to the TreeView control by using the DataScurce property. In fact, this is a more
flexible and easy-to-use property for binding data. By setting the DataSourceID property of the TreeView
control to the desired file, you can load the content of the TreeView control from the specified file. The target
file can be an XML file, a siternap, or you can even populate a treeview from the database, such as SQL Server or
MS-Access.

695

Chapter 18

After an appropriate datasource is set for the TreeView control, the TreeView control displays the information
in a tree structure. Using the datasource property is a flexible approach for the TreeView control as you can
easily change the text of any of the nodes by changing the content of the underlying file.

You can only bind the Treeview control to the XmlDataSource and SiteMapDataSource controls using the
wizards. However, if you want to bind the TreeView control to a database, you need to generate the
TreeView control programmatically.

Adding Nodes to a TreeView Control at Design Time

Adding node to a TreeView control at design time is easy to use but is not as flexible as hard-coding of
properties and cannot be changed at runtime. You can also set the URLs and descriptions of the nodes by using
the Tree View Node Editor option.

To add nodes to the TreeView control using the Tree View Node Editor, click the Show Smart Tag at the top-
right corner to display the Smart Tag and select the Edit Nodes option, as shown in Figure 18.2:

Figure 18.2: Selecting the Edit Nodes Option
The TreeView Node Editor-opens, andrallows_you to add and delete nodes and set their properties, as shown in
Figure 18.3:

FL T T

Simple Treeview
" TretView From Detabass
Tras¥iew with XmiDataSowrca
- TreeViw with SteMaplataSoures

fa b e Breveerari

Figure 18.3: TreeView Node Editor

Creating the TreeView Control

696

The Treeview control can be easily created in Visual Studio 2008. For this, simply drag and drop the control
onto the Web page. The TreeView control is available under the Navigation tab in the Toolbox of VS 2008. We
have used the TreeView control in the TreeviewControlVE application. You can find the code of
TreeViewControlVE application in the Code\ ASP.NET\ Chapter 18\ TreeViewControlVB folder on the CD.
You can find the code for the Default. aspx page in Listing 18.1:

Listing 18.1: Showing the Code for the Defauit.aspx Page
8 Pape LaNgUAges"VE" AUtoEventiireups"False” o

Navigation Controls: TreeView, Menu, and SiteMapPath

Chapter 18

698 :

Navigation Controls: TreeView, Menu, and SiteMapPath

Chapter 18

As you can see in the preceding listing, we have placed numerous TreeView controls on the Web page. The first
TreeView control contains a navigation structure for this application. After creating the navigation structure for
the application, we have created six different TreevView controls, each one with different styles of formatting,
The output of the preceding listing is shown in Figure 18.4:

= B o frge |
D gt
D iz
b oRiwael X Fatli
? Buat Nage 1
B oy

b HgMite) P - & i g)
b LTI iRz Modde 3

L et NI il

Figure 18.4: Simple TreeView Example
To add the nodes of the TreeView control at design time, choose the Edit Ncdes option from the menu or
Nodes property of the TreeView Control. Once you click the Nodes property option, a TreeView Node Editor
appears, as shown earlier in Figure 18.3.

You can now add nodes by clicking the Add a root node button on the Toolbar of the TreeView Node Editor
shown in Figure 18.5:

[Rdd L ast o

Figure 18.5: Showing the Toolbar of the Editor Diatog Box

700

Navigation Controls: TreeView, Menu, and SiteMapPath

You can add root and parent nodes by clicking the first button (Add a root node), and child nodes by clicking the
second button (Add a child node). Set the Text property for the nodes under the Properties panel.

Creating the TreeView nodes using the TreeView Node Editor is the simplest form of TreeView you can
generate with the help of code. You can also generate TreeView based on the XML file, SiteMapDataSource
or even with databases such as SQL Server.

Now it’s time to extend the example to generate the TreeView based on the XML data. To do so, we now add a
new Web form named TreeViewXMLData.aspx to our solution. In order to generate a TreeView from the
XML data, we need to bind that to an Xm1DataSource. First, add an Xm1DataSource control to the Web form
as follows:

<asp.m1oatasource Ab="XmlGatasourcel” runateserver”
Datari Te="~/Ravigation] ></asp:owibatasources . -

As you can see in the preceding code, we are using an XML file named Navi gatl on.xml as the data file for the
XmlDataSource control. Add the code in the Nav1gatlon xml file as shown as follows:
o <Txml version="1.07 ' : :

%ﬁi@eﬁéﬁi"’)"ﬁf B

After configuring the XmlbataScurce control its time now to add a TreeView control to the Web form and
configuring it. Once you placed a TreeView control on the Web form, you need to configure it to work with
XML data. To configure our TreeView control, first select Xm1DataScource as its data source in the Smart Tag
of the TreeView control and then click on the Edit TreeNode Databindings in Smart Tag, as shown in Figure 18.6:

Chccu Dwta Saurce: lm'ﬂmScurteI
Cuﬂl‘!queomm T

Figure 18.6: Configuring TreeView Control
This will open the TreeView Databindings Editor dialog box (Figure 18.7). Add the homepage and subpage
from the Available data bmdmgs section to the Selected data bmdmgs sectlon, as shown in Figure 18.7:

+
3

o

N

i} Auto-generse daea bindings.

Figure 18.7: TreeView Databindings Editor

701

Chapter 18

Atfter selecting all the required data-bindings it is time to configure them. In other words, we will now define the
structure of our TreeView control. Select one of your databinding; in this case, we are first selecting the
homepage item and then setting properties for it, as shown in Figure 18 8;

Axvilable data pindings:
{Emptys
+2 applieation
o hemepige
Subpage

Figure 18.8: Configuring DataBindings

Repeat the same steps for the subpage item as well and the process is completed. This complete process
generates the TreeView controls based on the ¥mlDataSource. We are using the TreeViewXMLData.aspx
page for displaying the data as per the preceding requirement. You can find the code for the
TreeViewXMLData.aspx page of the TreeViewControl application in the Listing 18.2.

Listing 18.2: Showmg the Code for TreeVlewXMLData aspx Page

e) .orgzi 99[:!1
st &l!aé ‘id-"l-leaél" rt.m;tw serve\

S iy 1du"nav >
G _- , :

' <asp:tabel In="tabell" i
i Font-Boid="True”
 ,dtr‘b _

by
«asp Treeview: m=
Imgeﬁetx"Arrows

.be._b_ :

Y casprTreeNode
702

Navigation Controls: TreeView, Menu, and SiteMapPath

ree’ |

T NEvigateur]="~/Treevi
| aspiTreenodes |
‘</aspTreenodey

Again run the TreeViewControl application and browse the TreeViewXMLData.aspx page by selecting the
TreeView with XmlDataSource node from the TreeView on the left panel of the application. Figure 18.9
shows the output of TreeViewXMLData . aspx:

703

Chapter 18

reavinw genaratad from XMiDataSource

B RO
* siolne. Loy
Tumyrtey Figer Satalace
ngieey. sub SMUDaaiouT s
Treavge uoh MANRLYaous

N T e
Figure 18.9: Generating TreaeView from XML Data
We will now generate a TreeView control from the SiteMapDataSource control. To do this, first add a new
Web form named TreeviewSiteMapDataSource.aspx to the solution. Next, we will add a sitemap file to
our solution by right-clicking on the solution and selecting the Add New Item. In the Add New Item dialeg box,

select the Site Map Template from the list of available templates and name it as Web.sitemap, as shown in
Figure 18.10:

Tl darter Puge

] A Cliest Conval
i e Foum

E T

i Daaser

WYHTMA Page
B

5 Sien Wiap

) Stybe Sheet

i Wont S onfgquesion e

Figure 18.10: Adding a Site Map to Solution

Click the Add button of the Add New Item dialog box. This will open the Web.sitemap file and Replace the
contents of the file with the following code:

wrls

Now add the following line of code in the TreeViewSiteMapDataSource.aspx page to add a
SiteMapDataSource control:

704

Navigation Controls: TreeView, Menu, and SiteMapPath

LiAasprSTteMapbatasource Mapsourcel” ruRateservart it :
The SiteMapDataSource control automatlcally links itself to Web. sitemap f11e we added in this apphcatmn
Let's add a Treeview control that will be populated based on this $iteMapDataSource control. You can
find the code for the TreeviewSiteMapDataSource.aspx page of the TreeViewControl application in
Listing 18.3:
Llshng 18 3 Showing the Code for TreeVlewS1teMapDataSource aspx Page

705

Chapter 18

«div id="content"s "

“adiv Classs"itemcontent™s

 : B

: saspilabel Ibe"
srated. £

Tirt % Hive tearcs

TaeView penerated from SitaMapDataSource

& ey ontiel Bl
Irzeviy bom datebass
Treqvini Al ERTDAASACA
Tiaaviw Wil SIEMAL DAL SN

i WMok R -
Figure 18.11: Generating TreeView from SiteMapDataSource
Generating TreeView from a Database
In case you want to generate TreeView control based on the database, such as SQL Server, you need to generate
the TreeView control programmatically by using the Treeview class since no wizard is available for this..

706

Navigation Controls: TreeView, Menu, and SiteMapPath

We will extend our TreeViewControl application for the current example. just add a new Web form named
TreeViewDataBase.aspx to the application. We are using Pubs database of the SQL Server. As a first step,
drag a SQLDataSource control from the Toolbox to the Web form, and configure it to work with Pubs database
existing in SQL Server (To know how to add work with the SQL Server database refer chapter 17: Web Forms:
Standard Controls). In this application we will display the first names of the authors and their books in
TreeView control. You can find the code for the TreeViewDataBase.aspx page of the TreeViewControl
application in Listing 18.4:

Listing 18.4: Code for the TreeViewDataBase . aspx Page

707

Chapter 18

Now, add the code in the code-behind file of the TreevViewDataBase.aspx page, as shown in Listing 18.5:
Llstmg 18 5 Code for the Code Behmd File of the TreeViewDataBase. aspx Page

708

Navigation Controls: TreeView, Menu, and SiteMapPath

To understand the preceding code, we will now discuss the code step by step. In the first step, we will add the
code for the TreeView2_TreeNodePopulate method, as shown in Listing 18.6:

709

710

Chapter 18

. Listing 18.6: Code for the TreeView2_TreeNodePopulate Method

The preceding listing checks the Treeview2 control. If it is found that there does not exist any node in the
TreeView2 control, the GetAuthorsName function is called to generate the first-level nodes containing the
author names. In the GetAuthorsName function, we query the database to retrieve the first seven records and
generate the first-level tree nodes by using the node .ChildNodes . Add method, as shown in Listing 18.7:

Listing 18.7: Code for Generating the First-Level Tree Node

After generating the authors’ names, the code again checks for the TreeView2 TreeNodePopulate event and
this time the GetBooksName function is called to generate the second-level nodes containing the books written
by the authors, whose names have been retrieved from the database by using the GetAuthorsName function,
as shown in Listing 18.8:

Listing 18.8: Code for Retrieving the Author Names from the Database

Navigation Controls: TreeView, Menu, and SiteMapPath

In the preceding listing, we have used a parameterized query to get the book names only for those authors
whose names have already been retrieved from the database and those authors that exist at the first level in the
TreeView2 control. This generates the complete tree view. The cutput of the TreeViewControl application is
shown in Figure 18.12:

Bul B It User Frgndly?

< Mighat

Tha Gourmet Sherowave
»lungs
Sdrcon Viley GRrtranomic Treats
el %1
Sacrets of Shoon valyy
= Mg
The Busy Exacutive's atsbars Gurda
You Can Conbat Computer Shgss!

P L

Figure 18.12; Generating TreeView from the Database

Using the Menu Class

The Menu class provides various properties, methods, and events that provide a greater flexibility while
displaying data using the Menu control.

tance hierarchy for the Menu class:

You can find the noteworthy pro

Table 18.4: Noteworthy Propaerties of Menu Class

; - 13 SRR L LR T 5 RS S

DataBindings Obtains a collection of MenuItemBinding objects that define the
telationship between a data item and the menu item to which the object is
bound

DisappearAfter Obtains or sets the duration for which a dynamic menu is displayed after

the mouse pointer is no longer positioned over the menu

DynamicBottomSeparatorImageUrl Obtains or sets the URL to an image to display at the bottom of each
dynamic mer item to separate it from other menu items

DynamicEnableDefaultPopOutImage Obtains or sets a value indicating whether default pop-out image is
' displayed in the dynamic part of the menu or not

DynamicHorizontalOffset Obtains or sets the number of pixels that a dynamic menu item is shifted

711

Chapter 18

712

Table 18.4: Noteworthy Properties of Menu Class

relative to its parent menu item

DynamicHoverStyle

Obtains a reference to the MenuTtemStyle object that allows you to set
the appearance of a dynamic menu item when the mouse pointer is
positioned over it

DynamicItemFormatString

Obtains or sets additional text shown with all menu items that are
dynamically displayed

DynamicItemTemplate

Obtains or sets the template that contains the custom content to render for
a dynamic menu

DynamicMenultemStyle

Obtains a reference to the MenultemStyle object that allows you to set
the appearance of the menu items within a dynamic menu

DynamicMenuStyle

Obtains a reference to the MenuTtemStyle object that allows you to set
the appearance of a dynamic menu

DynamicPopQutImageTextFormatString

Obtains or sets the alternate text for the image used to indicate that a
dynamic menu item has a submenu

DynamicPopOutImagelUrl

Obtains or sets the URL to a custom image that is displayed in a dynamic
menu item when the dynamic menu item has a submenu

DynamicSelectedStyle

Obtains a reference to the MenuItemStyle object that allows you to set
the appearance of the dynamic menu item selected by the user

DynamicTopSeparatorImageUrl

Obtains or sets the URL to an image to display at the top of each dynamic
menu item to separate it from other menu items

DynamicVerticalOffset

Obtains or sets the number of pixels that a dynamic menu item is shifted
relative to its parent menu item

Items Obtains a MenuItemCollection object that contains all menu items in
the Menu control

ItemWrap Obtains or sets a value indicating whether the text for menu items should
wrap

LevelMenuIltemStyles Obtains a MenultemStyleCollecticn object that contains the style
settings that are applied to menu items based on their level in a Menu
control

LevelSelectedStyles Obtains a MenultemStyleCollection object that contains the style
settings that are applied to the selected menu item based on its level in a
Menu control

LevelSubMenustyles Obtains a MenultemStyleCollection object that contains the style

settings that are applied to the submenu items in the static menu based on
their level in a Menu control

MaximumDynamicDisplayLevels

Obtains or sets the number of menu levels to render for a dynamic menu

Crientation

Obtains or sets the direction in which to render the Menu contrel

PathSeparator

Obtains or sets the character used to delimit the path of a menu item in a
Menu control

ScrollDownImageUrl

Obtains or sets the URL to an image displayed in a dynamic menu to
indicate that the user can scroll down for additional menu items

ScrollDownText

Obtains or sets the alternate text for the image specified in the
ScrellDownlImageUrl property

Navigation Controls: TreeView, Menu, and SiteMapPath

Tabie 18.4: Noteworthy Properties of Menu Class

Obtains or sets the URL to an image displayed in a dynamic menu to

ScrollUplmageUrl
indicate that the user can scroll up for additional menu items
ScrollUpText Obtains or sets the alternate text for the image specified in the
ScrollUplImageUrl property
SelectedItem Obtains the selected menu item
SelectedvValue Obtains the value of the selected menu item
SkipLinkText Obtains or sets the alternate text for a hidden image read by screen

readers to provide the ability to skip the list of links

StaticBottomSeparatorImagelrl

Obtains or sets the URL to an image displayed as the separator at the
bottom of each static menu item

StaticDisplaylLevels

Obtains or sets the number of menu levels to display in a static menu

StaticEnableDefaultPopOutImage

Obtains or sets a value indicating whether the built-in image is displayed
to indicate that a static menu item has a submenu

StaticHoverStyle

Obtains a reference to the MenuItemStyle object that allows you to set
the appearance of a static menu item when the mouse pointer is
positioned over it

StaticItemFormatString

Obtains or sets additional text shown with all static menu items

StaticItemTemplate Obtains or sets the template that contains the custom content to render for
a static menu

StaticMenuItemStyle Obtains a reference to the MenuItemStyle object that allows you to set
the appearance of the menu items in a static menu

StaticMenuStyle Obtains a reference to the MenultemStyle object that allows you to set

the appearance of a static menu

StaticPopOutimageTextFormatString

Obtains or sets the alternate text for the pop-out image used to indicate
that a static menu item has a submenu

StaticPopOutImageUrl Obtains or sets the URL to an image displayed to indicate that a static
menu item has a submenu

StaticSelectedStyle Obtains a reference to the MenuItemStyle object that allows you to set
the appearance of the menu item selected by the user in a static menu

StaticSubMenuIndent Obtains or sets the amount of space, in pixels, to indent submenus within

a static menu

StaticTopSeparatorImagelrl

Obtains or sets the URL to an image displayed as the separator at the top
of each static menu item

Target

Obtains or sets the target window or frame in which to display the Web
page content associated with a menu item

You can find the noteworthy methods of the Menu class in Table 18.5:

Table 18.5: Noteworthy Methods of Menu Class

FindItem

Retrieves the menu item at the specified value path

RenderBeginTag

Adds tag attributes and writes the markup for the opening Tag of the
control to the output stream emitted to the browser or device

713

Chapler 18

i Table 18.5: Noteworthy Methods of Menu Class

RenderEndTag Performs final markup and writes the HTML closing tag of the control to
the output stream emitted to the browser or device

You can find the noteworthy events of the Menu class in Table 18.6:

Table 18.6: Noteworthy Events of the Menu Class

Menultemclick Occurs when a menu item in a Menu control is clicked

MenultemDataBound Occurs when a menu item in a Menu control is bound to data

The Menu Control

The Menu control is another navigation control, which is also used to display site navigation information. The
Menu control can; however, display the site structure vertically as well as horizontally. It can be used as a
databound control, for example, binding the menu control with a SiteMapDataSource control. It can also
retrieve the data to be displayed from the items that are added to the Items collection of the Menu control at
runtime. The Menu control supports binding data with hierarchical datasource, such as XML files, You can also
add the database items to the Menu control at runtime using the Items collection of the Menu control. The
Menu control consists of one or more Menultems properties displayed at different levels of hierarchy. Each
Menulten, in turn, consists of properties to set the style of the individual MenuTtem. The menu control contains
two types of menus:

U Static menu —This type of menu is displayed completely with all the menu options on the screen. The entire
structure of the static menu, including the parent menu items and their sub menus, is visible.

J Dynamic menu--This type of menu contains static part which is displayed on the scree as well as the
dynamic part which appears when user passes the mouse pointer over the static part of the menu.

Figure 18.13 shows a simple Menu control from the MenuControl example:

T

Bl gl Vi rumo ko Orbug

EERETT I S

120G Meny Wrh e tical coantacon

2

SHATC Man HiLR tovizontal arientation

Menyitem | » Henultemz »

Using the XmiDataSource Class

714

The XxmlDatasource control is a data source used by the data-bound controls to display data in the tabuiar
format. The XmlDataSource class contains the methods and properties for the XmlDataSource control.

Here is the inheritance hierarchy for the Xm1DataScurce class:

Navigation Controls: TreeView, Menu, and SiteMapPath

e FEEETS. XmIDatason
y properties of the XmlDataSource class in Table 18.7:

You can find the notewo;

Table 18.7; Noteworthy Properties of the XmiDataSource Class

Obtains or set the time period, in seconds, to caches the data that the data source
control has retrieved

CacheDuration

CacheExpirationPolicy Obtains or sets the cache expiration policy that is combined with the cache
duration to describe the caching behavior of the cache that the data source control
uses

CacheXeyDependency Obtains or sets a user-defined key dependency that is linked to all data cache
objects created by the data source control. All cache objects explicitly expire when
the key expires

Data Obtains or sets a block of XML data to which the data source control binds

DataFile Sets the file name of an XML file to which the data source control binds

EnableCaching Obtains or sets a value to enable or disable the data caching for XmlDataSource
control

Transform Obtains or sets a block of Extensible Stylesheet Language (X5L) data that defines
an XSLT transformation to be performed on the XML data managed by the
XmlDataSource control

TransformArgumentList Provides a list of XSLT arguments that are used with the style sheet defined by the
Transform of TransformFile properties to perform a transformation on the
XML data

TransformFile Sets the file name of an Extensible Stylesheet Language (XSL) file (.xsl) that
defines an XSLT transformation to be performed on the XML data managed by
the xmlpataSource control

XPath Sets an XPath expression to be applied to the XML data contained by the Data
property or by the XML file indicated by the DataFile property

You can find the noteworthy methods of the Xm1DataSource class in Table 18.8:

Table 18.8: Noteworthy Methods of the XmiDataSource Class

GetXmlDccument Loads the XML data into memory directly from the underlying data storage or
from the cache, and return the data in the form of XmlDataDocument object

Save Saves the XML data to the disk that is currently placed in the memory by the
XmlDataSource control

You can find the noteworthy events of the XmlDataSource class in Table 18.%:

Table 18.9: Noteworthy Events of the XmiIDataSource Class

Transforming Occurs when the style sheet, that is defined by the Transform property or
identified by the TransformFile property, is applied to the XML data

715

Chapter 18

Using the XmiDataSource Contro/

You can use the XmlDataSource control to bind data with the Menu control. The XmlDataSource control
binds the XML data to the MenuItem properties. The binded data can be read from the sitemap.xml file. The
¥mlDataSource control can be found under the Data tab in the Toolbox of the Smart Tag. To add the
XmlDataSource control on the Web page, drag the control from the Toolbar and drop it control on the Web
form designer. After this control is added to the Web form designer, the control is displayed as shown in
Figure 18.14:

| U iy - K et ot ielal i . : N L
IoFAr Bt Ve Webatr ikt Debog Dwm fpma Tabk Took ekt Ambre Window Hep

oz uning WD aSANCE

Manu usng Steh Choose D Sovca: - SmibmmSoued |
[T ST
Sochoni b | AckrhScmms
i

© b 1 By rarnagtem rrplate

Figure 18.14: UsinQ XmiDataSource with Menu Control

To set the XML data with the MenuItems property of the menu control, we need to bind the XML file with the
AmlDataScurce control. Click the Smart Tag at the upper-right corner of the control and select the
XmlDataSource as the Data Source for the Menu control, as shown in Figure 18.14.

The xmlDataSource is using an XML file (Data.xml} as the source of data; this can be set through the
Properties window, as shown in Figure 18.15:

7 CacheExpitetionPoh Ansohde
L Cocheke Depender

2 oty

Ensbleviendtae Troe
Teapstorm Ten) &
TransformFile

APap

he path b mn KM data e,

Figure 18.15: Configuring the XmIDataSource

Menu Display Properties
You can change the look of the Menu control by setting the following properties:

U Orientation—You can set this property to horizontal to display menu either at the top or at the bottom of
the page. The default orientation value is Vertical.

O StaticltemFormatString--You canset this property to display the value for the static menus.
O DynamicItemFormatString—You can set this property to display the value for the dynamic menus.

716

Navigation Controls: TreeView, Menu, and SiteMapPath

Q StaticPopQutimageUrl-—You can set the replacement image for StaticPopOutImage. This means
that menu items can be hovered over to display all of its child items. The default image will appear
dynamically and will continue to be used for menu items.

Menu Styles

The Menu control supports various styles at different levels, such as on individual MenuItems, MenuLevels,
or MenuSubLevels. You can set styles for all Menulevels and Menultems that appear as both statically and
dynamically on a Web page. The following are the different style properties:

0 sStatic/DynamicMenuStyle—It controls properties for all MenuTtem property. It also controls
properties, like HorizontalPadding and VerticalPadding.

Q DynamicMenuItemStyle—It controls the style of the individual MenuItems property. It also includes
style properties, such as ItemSpacing, VerticalPadding, and HorizontalPadding.

Q DynamicSelectedStyle—It sets the style of the individual nodes in the TreeView control that are
currently selected. In other words, it can be described as a collection of style properties for the selected
MenuItem. It also includes style properties, such as HorizontalPadding, VerticalPadding, and
ItemSpacing.

0 DynamicHoverStyle—It sets the style properties of the individual MenuItem that is currently selected. In
other words, it can be set for the selected MenuT tem, while you hover your mouse over a MenuItem. It also
includes properties, like ItemSpacing, HorizentalPadding, and VerticalPadding.

Creating Static Menus

The menus in ASP.NET 3.5 can be easily created by simply dragging and dropping the Menu controls from the
Toolbox on to the designer. You can find this as MenuControlVB application. You can find the code of
MenuCcntrolVB application in the Code\ ASP.NET\ Chapter 18\MenuControlVB folder on the CD. You can
also add Static Menus by double clicking the Menu contrel in the Toolbox. The Menu control is added
automatically to the designer. Click the Edit Menu Items in the list. A Menu Item Editor will appear. Insert nodes
at different levels according to your requirements. You can also set the text for the nodes by setting the Text
property in the Properties pane, as shown in Fi

Figure 18.16: Menu ltem Editor

After inserting the nodes, click the OK button to finish. Replace the code of the Default.aspx page of the
MenuControl application with the code given in Listing 18.9:

Listing 18.9: Code for the Default.aspx Page

™7

Chapter 18

718

<titiesmeny Examp'fe¢/t1t1e>
~ <link hrefe"stylesheet.css" rels" sty_

«div 1d="header ;r
i .
ediv fdu"sidebar™s =
<@ty gt nav’>

Navigation Controls; TreeView, Menu, and SiteMapPath

The output of the MenuControl application is shown in Figure 18.17:

Static Mmou yih honzortal onentztien

Megulteind Mepltemilead Meouitwa? Mealtenlsol Hesulterizlost

o ou—-;n.m--um. | I TR

Flgure 18. 17 MenuControI Example

Creating Dynamic Menus

In this section, we are going to use the Menu control with the XML and SiteMapDataSource as We did in the
TreeViewControl example earlier. We have created an application named DynamicMenu, and y\ou can find
this application as DynamicMenuVB. You can find the code of DynamicMenuVB applic\‘:ttion in
the Cocde\ASP.NET\Chapter 18\DynamicMenuVB fclder on the CD.. Add the code, as ‘shown in
Listing 18.10, in the default page of the DynamicMenu application:

Listing 18.10: Code for the Default.aspx Page

719

Chapter 18

a:%iﬂwnmcﬂenu s:amp}afm_ﬂe;g_ P

- coynamicselectedstyle Backcelo
<Dynami CHENUTLemSEy 1e Horvzbnt
: verticalPadding=". /> B
 xpataBindings>
<asprMenultemiinding - taﬂemhern set;t1
Namgateurh:ie‘ids“vame Textﬁe‘l;ia.';__
o valueFields"value” f» T
i easps Menaztema1nd1ug Dataﬁgmbers"subeu
o Mavigateurifields"v value® TextField="t

PFie
</bataBindings>
: <sta§icuover5ty1e aackco}ors"#geooon" qug§

720

Navigation Controls: TreeView, Menu, and SiteMapPath

' _ﬂlorw #EEFRDEY f-:- i

</Datagindings> - N
ﬁta}icﬂwerszﬂ-e gackColor="#990000" F
> . -

</asp:Menus o
“Snbsp; &nhsp <br /=
Py e

</dive
«div id="footer">
. i <p class="1eft"> ’
27 AML content copyright © Kogent Solut
<fdive
<fdiv . -
<fdive . o -
. </fem>
</body> .
</htﬂ1> ’ : ! L ;
Add an XML file to your Web appllcanon say, Data.xml and add the code as shown in Llstmg 18 11 in the
Data.xml file:

Llshng 18 11 Code for the Data xml File

o <sufwage t!t'ie a“Page E
efsetctions K
</application> ‘ S
Add a Web.sitemap file to your Web apphcatlon and add the code, as shown in Llstmg 18 12, in the
Web. sitemap file:

v __’t_uezf‘fpagea aspx'.‘ﬁ_ :

Listing 18.12: Code for the Web. sitemap File
-<?xm] wversione="1,0" ericoding="atf-8" 7> .) V?
<s1teMap wmlns="http:/{sch ...mcrosaft mm/&spuat/szmuap—nle—l 0" !
<siteMapNode urls “pefault.aspx” t1tTe= "section 1% descriptions
-<siteMapNode: uris="ragel. asax" title="page-1" descrwnm"“ f:-
«siteMaphode uri="Page? aspx“ title="Page 2" .description=""

721

Chapter 18

The output is displayed in Figure 18.18, where we have generated two menus from XmlDataSource and
SiteMapPathDataSource, respectively:

Many utng XMLDataSource

oaliazs ¢

Manu using SiteMapDataSowcs

Fagel

Using the SiteMapPath Class

The siteMapPath class displays a set of text or image hyperlinks that enable users to easiiy navigate a Web site.

Here is the inheritance hierarchy for the SiteMapPath class:
isystem.object .-

Path

Systen.web.! Cont a
h class in Table 18.10;

You can find the noteworthy properties of the SiteMapPat

| Table 18.10: Noteworthy Properties of the SiteMapPath Class

CurrentNodeStyle Obtains the style used for displaying text for the current node

CurrentNodeTemplate Obtains or sets a control template to use for the node of a site navigation path that
represents the currently displayed page

NodeStyle Obtains the style used for the display text for all nodes in the site navigation path

NodeTemplate) Obtains or sets a control template to use for all functional nodes of a site
navigation path

ParentlevelsDispiayed Obtains or sets the number of levels of parent nodes the control displays, relative
to the currently displayed node

PathDirection Obtains or sets the order of the links displayed by the SiteMapPath control.
Possible values are RootToCurrent (default) or CurrentToRoot

PathSeparator Obtains or sets the string that delimits SiteMapPath nodes in the rendered
navigation path

PathSeparatorStyle Obtains the style used for the PathSeparator string

722

Navigation Controls: TreeView, Menu, and SiteMapPath

Table 18.10: Noteworthy Properties of the SiteMapPath Class

PathSeparatorTemplate Obtains or sets a control template to use for the path delimiter of a site navigation
path

Provider Obtains or sets a SiteMapProvider that is associated with the Web server
control

RenderCurrentNodeAsLink Indicates whether the site navigation node that represents the currently displayed
page is rendered as a hyperlink

RootNodeStyle Obtains the style for the root node display text

RootNodeTemplate Obtains or sets a control template to use for the root node of a site navigation path

ShowToolTips Obtains or sets a value indicating whether the SiteMapPath control writes an

additional hyperlink attribute for hyperlinked navigation nodes. Depending on
<lient support, when the mouse pointer is moved over a hyperlink that has the
additional attribute set, a too] tip is displayed

SiteMapProvider Obtains or sets the name of the SiteMapProvider used to render the site
Navigation control
SkipLinkText Obtains or sets a value that is used to render alternate text for screen readers to

skip the control’s content

You can find the noteworthy methods of the SiteMapPath class in Table 18.11:

Table 18.11: Noteworthy Methods of SiteMapPath Class

g

DatiBind Binds a data source to the SiteMapPath control and all its child controls

You can find the noteworthy events of the SiteMapPath class in Table 18.12:

Table 18.12: Noteworthy Events of the SiteMapPath Class
- e

ItemCreated Occurs when a SiteMapNodeltem is created by the SiteMapPath and is
associated with its corresponding SiteMapNode, This event is raised by the
OnltemCreated methed

ItemDataBound Occurs after a SiteMapNodeItem has been ‘bound to its underlying
SiteMapNode data by the SiteMapPath. This event is raised by the
OnItemDataBound method

The SiteMapPath Control

The SiteMapPath control is also known as the breadcrumb Navigation control. Breadcrumb allows you to
display the current page’s context within the entire structure of a Web site. It also allows you to display links as
a path back to the home page. It displays information regarding the user’s current page along with the erttife
hierarchy of the pages, thereby enabling the user to navigate back to some other pages in the hierarchy,

However, the 5iteMapPath control does not allow you to move forward from the current page to the next page
deeper in the site hierarchy. The SiteMapPath control does not use the $iteMapDataSource contral to
display data. It relies on a SiteMapProvider to retrieve the data. SiteMapProvider contains an XML file
Web. sitemap, which contains URLs and other information about the pages to be displayed. The SiteMapPath
control can be localized by adding attributes to the Web.sitemap file. Figure 18.19 shows a SiteMapPath
control on the Web form of the SiteMapPathControl example:

723

Chapter 18

SiteMapPath Behaviors

724

P “‘;‘“,,,,

| Dvag masgin huples b iz mbagins. Prts SHIFT i CTRL for rmore aptiass.

Figure 18.19: SiteMapPath Control

Earlier, to display the current page along with the entire hierarchy of the pages, you needed to create a manual
code; which, in tum, used some external data source to display such breadcrumbs. However, this functionality is
now built into . NET Framework. Therefore, all you need to do is use a one-line declaration in source code of the
application using the SiteMapPath control.

Data Retrieval Using the SiteMapPath Contro/

The SiteMapPath control uses SiteMapProvider to fetch the data and display it on the Web form. As you
have seen earlier, both the Menu and TreeView controls rely on the SiteMapDataSource control The
SiteMapPath control displays only the data whose URL is present in the specified SiteMapProvider. You
should always check that there is no typing error in the Web. sitemap file, otherwise SiteMapProvider will
not be able to display the desired output.

The SiteMapPath control displays various common properties to change the display behavior. Table 18,13
shows the noteworthy properties of the SiteMapPath class.

Table 18.13: Noteworthy Propetrties of the SiteMapPath Class

s " e

ParentLevelsDisplayed

By default, this property is set to -1, which means that all parent levels in the
XML file are displayed. You can set it to any integer vatue such as 1, 2, or 3 to
indicate the N-level of the hierarchy along with the current page

PathDirection

Sets this property as CurrentToReot, The default setting is such that it starts
from the highest node in the current XML file and goes up to the current page.
By setting this property, the links will be displayed in the opposite direction.
This means starting from the current page and ending root page or first page

PathSeparator

Sets this property to : {Semicolon) as path separator. Its default vatue is >

RenderCurrentNodeAsLink

Sets this property to true, so that the current node text on the Web page will
appear as hyperlink and not as plain text

ShowToolTips

Sets this property to faise, so that description text from SiteMapProvider is
not displayed automatically

Navigation Controls: TreeView, Menu, and SiteMapPath

SiteMapPath Appearance

You can set the appearance of a SiteMapPath control by using its style properties. You can also use skin and
-theme files for setting the appearance.

SiteMapPath Style

You can set different style properties available with the SiteMapPath control. The following is the list of
properties that can be used to set style for the SiteMapPath control:

Q ©NodesStyle-It can be used to control the appearance of the text for all the nodes displayed by the
SiteMapPath control. The default display text is that specified in the Title property of the SittMapNode.

O CurrentNodeStyle—It sets the property of the node corresponding to the currently displayed Web page.
The CurrentNodeStyle property often merges with the standard Web control style properties and the
NodeStyle properties.

8 RootNodeStyle—Itis used to set the style for the absolute root in the hierarchy of 5iteMapProvider.
Depending on the levels of the hierarchy present on the current page, RootNodeStyle may not be
displayed on every page of your Web site. It merges with the NodeStyle properties and the standard Web
control style properties.

Q PathSeparatorStyle—It is used to control the appearance of the path separator that appears
between navigation path nodes. PathSeparatorStyle merges with the standard Web control style
properties.

SiteMapPath Templates :

In addition to the style properties discussed above, the 5iteMapPath control also offers templates, which can

be used with a better flexibility to set the view of the control. Templates control the HTML rendering for the

specific part of the contrel. Remember, if you define a template for a particular node, it will override the
previous style setting defined for this node. To set the appearance of the SiteMapPath control, you can use the
following templates:

8 NodeTemplate—Itcan be applied on all the nodes in the hierarchy irrespective of their node type.

0 CurrentNodeTemplate—It sets the appearance of the node corresponding to the curtent page displayed.
CurrentNodeTemplate takes precedence over the NodeTemplate,

O RootNodeTemplate—It sets the appearance for the root node of the site hierarchy. RootNodeTemplate
takes priority over NodeTemplate and CurrentNodeTemplate. This means that if the current page is the
root page according to the site hierarchy, then only RootNodeTemplate will be used for the root node.

0 PathSeparatorTemplate—Itis used to separate the nodes with a separator between the nodes which are
currently rendered on the Web page. It replaces the PathSeparator text value in your application.

Creating SiteMapPath

As we have already discussed in this chapter, the SiteMapPath control can be automatically configured to the
SiteMapDataSource control, which, in turn, can read the Web.sitemap file to display the data on the
application. We have created an application named SiteMapPathControl. You can find this application as
SiteMapPathControlVB. You can find the code of SiteMapPathContrclVB application in
the Code\ASP.NET\Chapter 18\SiteMapPathControlVB folder on the CD.

To create Web . sitemap, right-click the Project name. A context menu appears, Select the Add New Item option
from the context menu. The Add New Item dialog box appears, as shown in Figure 18.10, Select Site Map from
the options available. This will create a new Web. sitemap file in the project.

The Web.sitemap file consists of navigational details for an application. You can set the title, URL, and other
information for each page by using the Web.sitemap file. Add the code, as shown in Listing 18.13, in the
Web. sitemap file:

725

Chapter 18

Llstmg 18.13: Code for the Web.sitemap File
Ll versione"1.0" encoding="utf-8" > . 35y
eMap xn‘tns-“m:tp. #/schenas. nrfcroseft cam{Aspne sitenap File-

' ¢ arTe"default.aspy’ *frTes"Hone ‘Page™
«:sitmnnnde yri="pagel.aspx" tiﬂem"Sectiou '
e -csitenapnode ur‘l-s nagez.aspx t‘ttles":;ectwn 2" -

s:/simgaodm :

‘&}(‘im{ % : : L . i Py
You also need to add the code, as shown in Llstmg 18 14 in the Default.aspx page of thls apphcahon

Listing 18, 14 Code for the Default.aspx Page

726

Navigation Controls: TreeView, Menu, and SiteMapPath

Now, add two Web forms in the project, named Pagel.aspx and Page2. aspx and add the code, as shown in
Listing 18.15, in the Pagel.aspx page of the SiteMapPathControl application:

Listing 18.15: Code for the Pagel.aspx Page

S /htmls

727

Chapter 18

Now, add the code, as shown in Listing 18.16, in the PageZ.aspx page of the SiteMapPathControl
application:

Listing 18.16: Code for the Page? . aspx Page
. N My L] o 3 :

h

Now, execute the fully functional SiteMapPath control, The output is shown in Figure 18.20;

728

Navigation Controls: TreeView, Menu, and SteMapPath

SiteMaphataSource Exampia

Heme Page

Go to Page 1 GO to Page 2

Boce T @ lotemet [ProtectedModecOn RI0% -

Figure 18.20: SiteMapPathControl Example

Summary

In this chapter, we have described three navigation controls- the Treeview control, Menu control, and
SiteMapPath control of ASP.NET 3.5. We have also discussed about the base classes of the navigation controls
along with its properties, methods, and events. In addition, the chapter discussed the implementation of these
navigation controls.

In the next chapter, we will discuss validation controls available in ASP.NET 3.5.

Quick Revies

Q1

Ans:

Q2.

Ans:

Q3.

Q4.

Ans:

What is the use of navigation centrols?

Navigation controls are used in a Web application to provide users with the flexibility of moving back
and forth between different Web pages of a website, These controls display the address of a Web page in
the form of Menus and Hyperlinks, which users use to navigate to any Web page of a Web application
from the current Web page.

List some important features of navigation centrols?
Some of the important features of navigation controls are as follows:

Q The navigation controls represent the structure of a Web application, that is, how different Web
pages of a Web application are linked together.

Q The navigation controls dynamically order the Web pages when a user traverses through different
Web pages.

Q The navigation controls recognize the user’s current position in the website and shift the reference
pointer to other pages accordingly when the user moves from a Web page to another.

List all the navigation controls?

Following is a list of the navigation controls:

Q SiteMapPath control

0O TreeView control

O Menu control

What is the SiteMapPath control?

The SiteMapPath control is a navigation control. This control displays the Map of the site related to its
Web pages. This map includes the pages in the particular website and displays the name of those pages.
You can click on that particular page in the Sitemap to navigate to that page. In other words, we can say

729

Chapter 18

that the SiteMapPath control displays links for connecting to URLs of other Web pages. Out of all the
Web pages contained in an ASP.NET website, you can choose any page to act as a Home page. This page
is known as root node. A user can access the Home page and any other page of the website with the help
of the SiteMapPath control.

Q5. Which property of the SiteMapPath control is used for accessing data from a database?

Ans: The SiteMapPath control uses a property called SiteMapProvider, for accessing data from a database.

Q6. What is the TreeView control?

Ans: The TreeView control is a navigation control, which is used in Web applications to display the location of
different Web pages as a tree structure. The TreeView control is used in Web pages to enable the user to
view the structure of the Web application by traversing its nodes.

Q7. What is the Menu control? What are the views of Menu control to display the data?

Ans: The Menu control is a Web Server control for representing data items. These data items can originate
from a database, an XML file, or a sitemap file. The Menu control of ASP.NET has two views for

displaying data:

O Horizontal Orientation—In this view, all the items displayed by the Menu control are aligned
horizontally.

Q Vertical Orientation—In this view, all the items displayed by the Menu control are aligned
vertically.

What are the categories of the Menu control?
Based on the type of data they present, the two categories of menu are:
Q Static Menu—The items of these menus are always displayed on the Web pages.

Q@ Dynamic Menu—This is created when the user of a Web page accesses the main menu item; the
dynamic menu items are presented as a submenu.

Q9. List the various types of nodes of the TreeView control?
Ans: The TreeView control has four types of nodes:
0 Root~Itis a top-level node in the tree.
Q Parent—These nodes are represented as parent nodes, which have child nodes shown as branches of
the parent nodes.
O Child—~These nodes are contained by its parent nodes.
Q Leaf—It does not contain any child nodes.
Q10. What are the node style properties of the SiteMapPath control?
Ans: The node style properties of the SiteMapPath control are as follows:
O CurrentNodeStyle — Obtains the style used for the display text for the current node
O RootNodeStyle —Obtains the style for the root node display text
Q NodeStyle—Obtains the style used for the display text for all nodes in the site navigation path

x

730

Validation Controls

If you need information on: See page:

Introduction 732

Chapter 19

Introduction

Validation controls are controls used for validating the data entered in an input control, such as the
textbox of a Web page.

When a use,r'enters invalid data in an associated control, the validation control displays an error message on the
screen. The error message is defined as a property value of the validation control. The data being entered is
validated each time it is entered by the user, and the error message disappears only when the data is valid.
Validation controis help save time and enhance the efficiency of the applications by validating the data before a
request is sent to the server. The following Validation controls are discussed in this chapter:

The RequiredFieldValidator control

The RangeValidator control

The RegqularExpressionValidator control

The CompareValidator control

The CustomValidator control

The validationSummary control

Let’s explore these controls in detail, starting with the Basevalidator class, which is the base of all validation
controls. .

00O O0ODC

The BaseValidator Class

732

The System.Web.UI.WebControls.BaseValidator class provides basic implementation required for all
validation controls. Here is the inheritance hierarchy of this class:

55 f;\re given in Table 19.1:

Noteworthy public properties of the BaseValidator cla

Table 19.1: Noteworthy Public Properties of the BaseValidator Class

ControlToValidate Handles an input control, such as the TextBox control, which needs to be validated

Display Handles the behavior of the error message in a validation control

EnableClientScript Handles a value indicating whether or not client-side validation is enabled

Enabled Handles a value that indicates whether or not the validation control is enabled or not

ErrorMessage Handles the text for the error message displayed in a ValidationSummary control
when validation fails

ForeColor . Handles the color of the message displayed when validation fails

Isvalid Handles a value that indicates if the associated input control passes validation or not

SetFocusOnError Handles a value that indicates if the focus is set on the control or not, specified by the
ControlToValidate property when validation fails

Text Handles the text displayed in the validation control when the validation fails

ValidationGroup Handles the name of the validation group to which this validation control belongs

The ValidationGroup property, when sel, validates only the validation controls within the specified group when the
conlrol is posted back lo the server

Validation Controls

Noteworthy public methods of the Basevalidator class are listed in Table 19.2;

Tablo 19.2: Noteworthy Public Methods of the BaseVaIIdator Class

Validate Helps in performing validation on the associated input control and updates the
IsValid property
GetValidationProperty Helps in determining the validation property of a control, if it exists

Now, let’s discuss the Validation controls one by one in detail.

The RequiredFieldValidator Control

The RequiredFieldvalidator control is the simplest control, and is used to ensure that the user has entered
the data into the input control, such as TextBox to which it is bound. For example, if you are entering data, for
buying a T-shirt, in an input control, it is necessary to enter the size of the T-shirt that you want to buy. If you do
not enter a value, the Validation control displays an error message. Here is the inheritance hierarchy for the
RequiredFieldvalidator class:

Tlus class has no non-inherited methods or events Thls class inherits the propertles and methods of the
BaseValidator class that are listed in Tables 191 and 19.2. Noteworthy public property of the
RequiredFieldValidator class is listed in Table 19.3:

Table 19.3: Noteworthy Public property of the RequiredFieldValidator Class

Initialvalue Handles the initial value of the associated Input control

Using the RequiredFieldValidator Control

To add a RequiredFieldvalidator control on a Web page (Default.aspx), add the following code to the
source code of the Web page:

Now, let’s create an application named RequiredFieldValidatorVBExample. You can find the
code of RequiredFieldValidatorVBExample application in the Code\ASP.NET\Chapter 19\
RequiredFieldValidatorVBExample folder on the CD. You can add a RequiredFieldValidator control to a
Web page either by dragging and dropping it from the Standard tab of the Toolbox or by double<clicking this
control in the Toolbox.

In this example, we are adding two RequiredFieldvValidator controls on a Web page for validating two
TextBox controls. The RequiredFieldValidator controls ensure that the two TextBox controls are not kept
empty by the user at runtime. Listing 19.1 shows the Default.aspx page for the RequiredFieldvValidator
control:

Listing 19.1: Showing the Code for the Cefault. aspx Page

733

Chapter 19

734

c<titlerRequiredrieldvalidator Contrel -'Examp1e<it1t1e>
<Hmc href«ae“st‘y‘lesheet Egs™ reh"st' 1as

server’s <
d="header™s | e T

i

Tefdive e
_“dsv ldﬁ"s\id&bﬂf—' ; L R R L g g -
< wdiv id="nav"» : TR T
<fdivs
<fdive>
: 'dn“content":» E. :
£lass =" 1temc;ontent

)

Text=" Reqm redrield Vahdator_coh ‘ol Exampl
sixnu*.'uedim‘-' Fon : 7!

*"ControlTovalidate
: 'empty“></a

Texta"Passwg '
Mbsp. &hbsp; ,. ;
<asp:TextBox I0="TextBox2" rum;
: mdth="1'{'jpx »</aspITeXtBOXS -
‘ “'mp RequiredrisTdvalidator To="Requi redFieldval
CantralTovahdatez TextBoX2" ErrorMessage="passy
‘empty">c/asp:requiredrieldval

&nbsg,&nhsp &mbsp,&nhsp,&nhsp &absps
= Anbsp i , &anp,&absp*&nbg
o8 &tbgp,&ﬂbsp,&n sp;dnbsps v _

<asp:Button ID="Buttonl® runat=" server" Backto]om“alack Font?m'lda Thre’
Font-=5ize="Mediun" Foreca]or="white Text—"Submt“ />
eV Hd="Fodtars T ;

i e c‘tass-*’?eﬁ?t"

%5 contem capyﬂght &ceﬁy, Kogent SDW‘E"I’GHS zht'lds»

If you run the apphcahon and click the Subrmt button without entering data in the two TextBox controls, both
the RequiredFieldvalidator controls display error messages, as shown in Figure19.1:

Validation Controls

8-

- ‘L_;a.,,_-‘-;j‘rmc -

Uzt name can ool DE mpty

Password: Passwerd catt not he empty

E

T P it | Pustected Mode O RN v

Figure 19.1: Two RequiredFieldValidator Controls on a Web page Showing Error Messages

The RangeValidator Control

The RangeValidator control checks whether or not the value of an input control is inside a specified range of
values. It has the following four three properties:

O ControlTeoValicate property--Contains the Input control to validate

0 MinimumValue property —Holds the minimum value of the valid range

0 MaximumValue property —Holds the maximum value of the valid range

If one of these properties is set, then the other property must also be set.

Do not forget to set the Type property to the data type of the values. The following data types can be used for

the values:

| W i = w I u)

Noteworthy public properties of the RangeValidato

String — A string data type

Integer— An integer data type

Double— A double data type

Date — A date data type

Currency — A currency data type

Here is the inheritance hierarchy for the RequiredFieldvalidater class:

System.obia

r class are listed in Table 19.4:

MaximumValue

Table 19.4: Noteworthy Public Properties of the RangeValidator Class

Obtains or sets the maximum value of the validation range for the Rangevalidator control.

MinimumValue

Obtains or sets the minimum value of the validation range for the RangeValidator control.

Using the RangeValidator Control

When you add a RangeValidator control on a Web page (Defaultaspx), it adds the following code to the
source code of the Web page:

735

Chapter 19

736

ErrarMess, Validator”></asp:Rangevalidarors .
Now, let's create an application named RangeValidatorVBExample. You can find the code of
RangeValidatorVBExample application in the Code\ ASP.NET\ Chapter 19\ RangeValidatorVBExample folder
on the CD. In this example, we are adding two RangeValidator controls on a Web page for validating two
TextBox controls. The first Rangevalidator control ensures that the age entered in the first TextBox control
is in the range 20-40 yrs. The second RangeValidator control ensures that the date of birth is in the range
1988/1/1 to 2028/1/1. Listing 19.2 shows the Default.aspx page for the RangeValidator control:

Listing 19.2: Showing the Code for the Default . aspx Page

el Page ta " AutoEventwireupa"false™ Code

Y/ PUICEFOTI SorTm
el o,

<asp:label Ib="Label2" runat="serve
_ Text="Your Age:"></faspiiabel> .
- Smbspy&nbip; T

Validation Controis

Now, enter values outside the specified range in the TextBox controls and click the Submit button. The
RangeValidator controls display an error message, as shown in Figure 19.2:

£

H

S

Your Age: 1 Lyvakd Age. Plaass antar the age bateaan 20 to 40. H]
i3

4

Dute of Birth [YATY/0M/00 format) . TBMSE T fuyaka 008, [k st ba
betwasan 168887371 1o 202481 L.

Dt . l iterrt | Protected Mode On U -

Figure 19.2: Two RangeValidator Controls on a Web page Showing Error Messages

(Note i

It is mandatory o use a RequiredFieldValidator control with the RangeValidator, RegularExpressionValidator,
CompareValidator, and CustomValidator controls because the latler do not work on blank input controls,

The RegularExpressionValidator Control

Regular expressions are used to check whether or not the text matches a certain pattern. The
RegularExpressionvalidator control validates whether the value in the Input control {(text box) matches
the format specified by the regular expression, such as a US telephone number or a date format. The
ReqularExpressionValidator control exists within the System.Web.UT.WebControls namespace,

In general, regular-expressions are made up of text with an embedded code listing that starts with a backslash
(\) as well as other control code listings. The following is an example:

CiAbiacZas RN el : S e PR L
The code for a word boundary {where a word ends or starts) is \ b and a character class is a set of characters
surrounded by [and] . This allows you to specify what characters you want to accept. So, this regular
expression matches a word consisting of uppercase or lowercase letters only. The + sign stands for one or more
of, so we matching one or more uppercase and/or lowercase letters here.

For example, the regular expression to determine if the text matches a valid e-mail address is:

737

Chapter 19

Here, \ w stands for a word character (such as letters, underscores, and the rest) and * means zero or more of.

ASP.NET 3.5 includes some pre-built regular expressions that you can use to match well-known sequences of
characters, such as, a French phone number, P.R.C. social security number, US social security number, e-mail
address, Internet URL address, and the rest. Regular expressions are complex to understand as they require in-
depth knowledge of the character relations required during custom expression definition.

Here is the inheritance hierarchy for the RegularExp ressionValidator class:

W%M

This class has no non-xnherlted methods or events Noteworthy pl.lbllC property of the
RegularExpressionValidator class is listed in Table 19.5:

i Table 19.5: Noteworthy Public Property of the RegularExpressionValidator Class

VaiidationExpressicn Obtams or sets the regular expression that you want to match data agamst for validation

Using the RegularExpressnonValldator Control

When you add a RegularExpressionValidator control on a Web page (Default.aspx), it adds the following code to
the source code of the Web page:
.+ <asp:RegularExpressionvalidator.. im"ugu‘mr&xwmvmv@iﬁ 4
_ - ErrorMassage="kegularexpressionvalidator’ it :
Now, let's create an application named RegularExpressionValidatorVBExample. You can fmd the code of
RegularExpressionValidatorVBExample application in the Code\ ASP.NET\ Chapter 194
RegularExpressionValidatorVBExample folder on the CD. In this example, we are taking two
RegularExpressionvalidator controls on a Web page for validating two TextBox controls. It ensures that
the data (URL and email address) entered in both the TextBox controls is valid. Listing 19.3 shows the
Default.aspx page for the RegularExpressionValidator control:

Listing 19.3: Showmg the Code for the Default.aspx Page '
A Page b : "1?" xtutasvantw'l reupn"fal se cadeF: le="pefault. aspx,vb". -
S 4 q adr ﬂ :) g

ey W?arzxpmsswnva‘ﬁw o
“Yink hreﬁz Stylesheet.css” rew-sfyies

738

Validation Controls

<ASHTTEXTBOK: Ibe"‘rextﬁexl mﬂm"server“ md’thn"l??px ></asp Texm"‘ o
<asp:Regularexpressionval idator znn"kegu1arexpressianw3¢dam1“ runatﬁe seml*"

- ControlTovalidate="TextBox1® Errel‘Message:a"ﬂot & vatid vRL, ™ ‘
validationExy re::}ommpgsw* SYEEr TN

ControTTovatidate="Textbox1" Erp
U bYank ></asp seqmreﬂﬁew\raﬂda O
B £
<hr /> :) S
<aspilabel: mn"s_ahelz“ r'unats ewer“ Font«-sdda"?me <-cht-size="smﬂ“
- Text="Enter E-maﬂ address-s.- e i

q Fieldy tbr'. ID="Requ1redF'lerVaTTdatorZ ruﬁats 5 mr" o
mntrﬂmmlmateu"vem= Ermmass«agee"‘m'ls jeld Can ot be
Tank.” --</a§p &equi reds : datom : '

.f&nhsp nbsp: &nbs ," '..’&anp ,&nbs ,&n 58

: bsp,&nbsg,&nbsg ; 5p &nbs;r &nbs”g p'

Anbsp: ._bsp dinbsp; , , ,&nbsy, i . T
d t1 “runat="server"” BackCoTor"w 'Black” Font

F=white i

/bodys "
Now, enter the values in the TextBox controls and click the Submit button. The
RegularExpressionValidator controls display an error message, as shown in Figure 19.3:

= .v.r_ e “‘_"E"ﬁ.‘a'&"ﬂ i“" ruvdg;a.m PRI
AU SRR

U b b Vew foomr Tooh i,

b .flqu-ﬁ--m -ml-w-

ENCETE i Bidreax: pho@pralcem

L

|D¢'ula=v- et Pt e B Do v

Figure 19.3: ReguiarExpresslonValidator Controls Displaying Error Message on a Web page

739

Chapter 19

The CompareValidator Control

The CompareValidator control is used to compare the value entered by a user into one Input control with the
value entered into another Input control ot with an already existing value. The CompareValidator control
exists within the System.Web.UI.WebControls namespace. Table 19.6 lists the various Operator property
types, specifying the different types of comparisons:

Table 19.6: Operator Properties of the CompareValidator Control

Equal Checks whether the compared values are equal

NotEqual Checks that controls are not equal to each other

GreaterThan Checks for a greater than relationship

GreaterThanEqual Checks for a greater than or equal to relationship

LessThan Checks for a less than relationship

LessThanEqual Checks for a less than or equal to relationship

DataTypeCheck Compares datz types between the value entered into the data-entry control being validated
and the data type specified by the Type property

The Type property is used to specify the data type of both the comparison values, where String is the defauit
type. Both values are automatically converted to the String data type before the comparison operation is
petformed. The different data types that can be use are as follows:

String — A string data type

Integer-- An integer data type

Double— A double data type

Date — A date data type

Cutrency — A currency data type

Noteworthy public properties of the Comparevalidator class are given in Table 19.7;

DO0ODOOo

Table 19.7: Noteworthy Public Properties of the CompareValidator Class

ControlToCompare Obtains or sets the data entry control, which has to be compared with the data<ntry control
being validated.

Operator Obtains or sets the comparison operation to perform.

ValueToCompare Obtains or sets a constant value to compare with the value entered by a user in the data
entry control being validated.

Using the CompareValidator Control

740

When you add a CompareValidator control on a Web page (Default.aspx), it adds the following code to the
source code of the Web page:

Now, let's create an application named CompareValidatorVBExample. You can find the code of
CompareValidatorVBExample application in the Code\ ASP.NET\Chapter 19\ CompareValidatorVBExample
folder on the CD. In this example, we take a Comparevalidator control on a Web page, which validates the
third TextBox control. It ensures that the data (password) entered in the third TextBox control is exactly the

same as the data (password) entered in the second TextBox control. Listing 19.4 shows the Default.aspx page
for the CompareValidator control:

Validation Controls

741

Chapter 19

Now, run the apphcahon and enter]ohn in the first TextBox control, abc@123 in the second TextBox control,
abc@123 in the third TextBox control, and then click the Submit button. The CompareValidator control
dlsp]ays an error message, as shown in Figure 19.4:

q a _n_ ,;Mm'&hlk'u.:

Re-lype Passworgd: dvssess Password does not match,

I

o Gmmwmmm T ”U.m’i R

Flg/uwe 19 4: CompareValldator Control Dlsplayu;lg Error Message on a Web page
The CustomValidator Control

The CustomValidator control is used to customize and implement data validation as per your requirement.
Occasionally, you might need to validate your data in a way that is not possible directly with the help of existing
Validation controls. For example, if you want to find out whether a number is odd or even, you cannot use an
existing Validation control for doing that because this functionality is not included in any of the validation
controls. To solve this problem, you need a Validation control that can be customized to solve this problem. The
CustomValidator control exists within the System.Web.UI.WebControls namespace. Here is the
inheritance h1etarchy for the CustornValldator class:

system object . o Sl

Validation Controls

en.web . UT.webControls: BasevaTidator :

. e L0 System. web UT webChirtrets, customvaﬁdator :

The CustomValldator control Checks whether or not the input you have given, such as prime, even, or odd
number, matches a given condition. Noteworthy public properties of the CustomValidator class are listed in
Table 19.8:

Tabile 19.8: Noteworthy Public Properties of the CustomValidator Class

ClientValidationFunction . Obtains or sets the name of the custom client-side script function used for validation
validateEmptyText Obtains or sets a Boolean value indicating whether empty text should be validated
or not

For using the CustomValidator control in a Web application, first create a function using a scripting language,
such as JavaScript or VBScript {both are supported by Internet Explorer), in the source file of the Web page.
You can then set the ClientValidaticnFunction property of the CustomvValidator control to the name of
the function you have created. The Customvalidater control validates the data entered by the user in the data
entry control at the runtime on the basis of the code written inside this function.

A noteworthy public event of the Customvalidator class is listed in Table 19.9:

| Table 19.9: Noteworthy Public Event of the CustomValidator Class

i ServerValidate

Occurs when validation takes place on the server

Using the CustomValidator Control

When you add a CustomValidator control on a Web page (Default.aspx), it adds the following code to the source
code of the Web page:

Now, let’s create an apphcatlon named CustomVahdatorVBExamp]e You can find the code of
CustomValidatorVBExample application in the Code\ASPNET\Chapter 19\ CustomValidatorVBExample
folder on the CD. In this example, we are taking a CustomValidator control on a Web page, which validates
the TextBox control and ensures that the user enters the correct data (username). Listing 19.5 shows the
Default.aspx page for the CustomValidator control:

Listing 19.5: Showmg the Code for the De f ault aspx Page

4:-Fom ids"Fom “Funat="server"s
. <sceipt 1mguage—"vhstﬂpt" type:"text/vbscript“>
‘sub validate {source; arguments)

743

Chapter 19

In the source tlle, Default.aspx, we have created a procedure named Validate in the <scr:.pt> tag The
string that the user enters should be same to the string defined, testuser, in the script. Now, run the application.
The Customvalidator control displays an error message because the username we provided is incorrect, as
shown in Figure 19.5:

744

Validation Controls

Enter User Name; Jonn

Invalid entry. Comect usernama is 'testuser’.

o

P T i nbemet | Protected Mode On BRI v

Figure 18.5: CustomValidator Control Displaying Error Message on a Web page

The ValidationSummary Control
The validationSummary control collects ail the Validation control error messages (known as summary) and
displays it collectively on the screen. The display of the summary, which can be a list, a bulleted list, or a single
paragraph, can be set by using the DisplayMode property. You can alse specify whether the summary should
be displayed in the Web page or in a message box by setting the ShowSummary and ShowMessageBox
properties, respectively. The ValidationSummary control exists within the System.Web,UI,WebControls
namespace.

Here is the inheritance hierarchy for the ValidationSummary class:

Noteworthy public properties of the validationSummary class are listed in Table 19.10;

Table 19.10: Noteworthy Public Properties of ValidationSummary Class

DisplayMode Obtains or sets the display mode of the ValidationSummary control

EnableClientScript Obtains or sets a value indicating whether the ValidationSummary control updates
itself using the client-side script

ForeColor Obtains or sets the foreground color of the control

HeaderText Obtains or sets the header text displayed at the top of the summary

ShowMessageBox Obtains or sets a value showing whether the validation summary is displayed in a
message box

ShowSummary- - Obtains or sets a value showing whether the validation summary is displayed in line

ValidationGroup Obtains or sets the group of controls for which the ValidationSummary object
displays validation messages

745

Chapter 19

While using a ValidationSummary control in a Web application, if you want to display all the error messages
on the same Web page, you must set the ShowSummary property of the ValidationSummary control to True.
In case you want to display the error messages in a message box, set the ShowMessageBox property of the
ValidatlionSummary control to True. By seiting both these properties to True, you can display the error
messages in both ways. You can also set the mode in which you want to display the error messages, by setting
the DisplayMode property of the ValidationSummary contrel. The possible values for this property are
List,BulletList, and SingleParagraph.

Using the ValidationSummary Control

When you add a ValidationSummary control to a Web page (Default.aspx), it adds the following code to the
source code of the Web page:
<aspivalidationSummary X0="validationSummary2" . runat=""$&¥g E

Now, let's create an application named VahdahonSummaryVBExample You can find the code of
ValidationSummaryVBExample application in the Code\ ASP.NET\, Chapter 19
ValidationSummaryVBExample folder on the CD. In this example, we are taking two
RequiredFieldValidator controls and one ValidationSummary control on a Web page. The
ValidaticnSummary control displays a summary of the error messages from all the other Validation controls.
Listing 19.6 shows the Default.aspx page for the ValidationSummary control:

Listing 19.6: Showmg the Code for the Default.aspx Page
<¥@.Page LInglige: ”va"—AutoEventhﬁreups"f"Tse
inherits="_pefault" %> B

<!DOCTYPE ‘htmi PUBLIC -
http.// 3.org/T

Lok Yink. i!refa Sty1esh¢et css“ rel styl
s heads. PR
<bodys> :

<form id="Form” runat="server“>
e kY 'idc"header":- :

asp:Reqiri redrieldvalidators

Validation Controls

. - Fontssizes"small"
Sl

<}'htm71> Ce L : SEm b T o
Now, run the application and leave both the TextBox controls blank and click the Submit button. Notice that
errors related to both the RequiredFieldvValidator controls in the ValidationSummary control appear, as
shown in Figure 19.6:

R R R Yot

LagL Hame:

» First Name Peld can nor be piank.
v 135¢ Name Feta man rot be blank.

=

Summary

In this chapter, we have learned about the Validation controls, for example, RequiredFieldvalidator,
CustomvValidator, and the rest. These controls are used to validate data entered by the user at the client-end.
This validation, in turn, helps in reducing the load on the server by eliminating the need to send every piece of
data to the server for validation. The associated control property for each control needs to be set for its
association with standard controls. At the time of designing a website, all the validation controls require an
expression property. This property helps validate the data entered by a user in the associated control.

In the next chapter, we describe the Web Parts controls.

Quick Revise
Q1. What are the validation controls available in ASP.NET?
Ans: ASP.NET includes the following validation controls:
O RequiredFieldvValidator—Validation succeeds as long as the input control does not contain an
empty string.
O RangeValidator— Validation succeeds if the input control contains a value within a specific
numeric, alphabetic, or date range.

Q0 CompareValidator—Validation succeeds if the input control contains a value that matches the
value in another specified input control.

747

Chapter 19

748

Qz

Q3.
Ans:

Q9.
Ans;
Q10.

Q

Q
Q

RegularExpressionvValidator —Validation succeeds if the value in an input control matches a
specified regular expression.

CustomValidator —Validation is performed by a user-defined function.
ValidationSummary—Displays summary of all current validation errors.

How can we display all validation messages in one control?

By using a ValidationSummary control.

Which data type does the RangeValidator control support?

Integer, String, and Date.

Which control will you use if you need to ensure that the values in two different controls match?
The Comparevalidator Control.

Which method is used to force all the validation controls to run?
Page.Validate().

Which property validates only the validation controls within the specified group?
ValidationGroup property.)

What does ‘+” sign signifies in regular expressions?

The ‘+* sign stands for zero or more of.

Mention operator property types of the CompareValidator Control?

OCRDoOo0oQ

NotEqual
GreaterThan
GreaterThanEqual
LessThan
LessThanEqual

DataTypeCheck

Which validation control is used to validate whether number is even or not?

CustomValidator control

Which property of VaidationSummary control is used to display summary in a message box?
ShowMessageBox property

